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A micro-mechanism based analysis

for size-dependent indentation hardness
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A micro-scale analytical model for predicting size-dependent microhardness is presented.
The indentation size effect is explained by dissipation energy associated with the contact
surfaces. Micro-mechanics mechanism of this energy dissipation is studied via a plastic
deformation analysis of micro-scale asperities on the contact surface under indentation.
The analysis shows that the microhardness depends not only on the properties of the bulk
material under test, but also the properties of the contact surface, such as the plastic
behavior of the micro-asperities on contact surfaces. The dependence of microhardness on
the roughness parameters of the contact surfaces is also revealed from the analysis.
C© 2002 Kluwer Academic Publishers

1. Introduction
It is widely accepted that indentation hardness test
is one of the most valuable experimental techniques
for measuring mechanical properties of materials. Re-
cently, more attention has been paid to the microhard-
ness indentation tests or nanoindentation techniques
[1–3] due to their feasibility to evaluate properties of
micro-scale materials/structures used for fabrication of
micro-electron-mechanical systems (MEMS) compo-
nents. Since the properties of the micro-scale mate-
rials/structures differ from those in the macro world
[4] and MEMS components are too small to be mea-
sured by conventional methods, micro/nano indentation
tests are probably one of the most feasible techniques
to assess mechanical properties of microscopic materi-
als/structures.

Traditionally, the indentation hardness is related to
the yield stress of the material under testing. According
to the conventional theory of plasticity, the measured
hardness value should be a material constant, indepen-
dent of indenter size or load applied on the indenter as
discussed in [5, 6]. On a macroscopic scale, the hard-
ness value is indeed a material constant, which is called
true hardness or macrohardness [6, 7]. However, on a
microscopic scale, experimental evidence (see, e.g., [1,
2, 8–10]) shows that the measured micro-hardness is no
longer a single material constant, but a function of the
indenter size, the applied test load, or the depth of the
indentation. This is the so-called indentation size effect
(ISE). The hardness of thick, high-purity, epitaxially
grown silver on sodium chloride was found to be size
dependent as the indentation sizes were below ∼10 µm
[8]. The Vickers hardness of annealed aluminum varied
with applied load in low-load range (between 10 g and
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1 kg) [9]. This size-dependent effect of microhardness
implies a serious problem for utilization of micro/nano-
indentation tests in MEMS characterization, since it is
insufficient to quote a single hardness number. There-
fore, it is necessary to understand the fundamental phys-
ical issues and the parameters involved in micro/nano
indentation tests.

The understanding of ISE is still in a stage of de-
velopment. Explanation of ISE was made by various
mechanisms, including the Meyer law [1, 11] and its
generalized approaches (see, e.g., [12, 13]) to fit the
measured hardness-load or hardness-indentation size
data, energy-balance consideration [13, 14], the pro-
portional specimen resistance (PSR) model [1, 7, 12]
and so on. Readers are referred to the papers by Li
et al. [1] and Quinn and Quinn [13] for more mod-
els and detailed reviews. Some recent works [6, 8, 15]
were especially interested in theoretical prediction and
the physical basis of the indentation size effect. Begley
and Hutchinnson [6] determined the effect of material
length scale on predicted hardness for microindentation
tests and explained the ISE by the so-called strain gradi-
ent plasticity theory. Nix and Gao [15] studied the ISE
in crystalline materials as a law of strain gradient plas-
ticity. In addition, Gerberich et al. [16] discussed mate-
rial property variation with depth, and Bobji and Biswas
[17] presented a roughness dependency model for hard-
ness based on single asperity contact. The errors associ-
ated with nanoindentation measurement were discussed
by Mencik and Swain [18].

In the present paper, the size effect in microhardness
tests is argued by dissipation energy associated with the
contact surfaces on a microscopic scale. Instead of con-
sidering the problem on macro-scale only, we examine
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it on both macro and micro scales. Our macro-scale
energy analysis shows that total energy consumed dur-
ing the indentation consists of two parts. The first part
is bulk plastic deformation energy, which is associated
with the volume pressed by indenter. The second part
is the contact dissipation energy, which is directly pro-
portional to the area in contact between the indenter
and the material under testing. The ratio of the sec-
ond part to the first part is negligibly small for a large
size indention. The second part only becomes impor-
tant in micro-indentation tests. On a micro-scale, the
mechanism of the contact dissipation energy is studied
via a plastic deformation analysis of the asperities. The
relationship between the density of contact dissipation
energy and the micro-scale roughness parameters of the
contact surfaces is established by a statistical analysis
for the contact of rough surfaces. As a result, the micro-
hardness and the micro-scale roughness parameters are
related in our analysis.

2. Energy balance for indentation
Let us consider a typical static indentation test as shown
in Fig. 1, where a rigid indenter with conical shape is
firstly pressed into the material under testing by a nor-
mal load, and then the normal load is removed. The area
of the indentation is measured, and the hardness num-
ber is defined by the ratio of the load over the projected
area of indentation. With an infinitesimal indentation
δx , which is an infinitesimal permanent displacement
in the direction of the normal load P , the energies in-
volved in this indentation system changes. Among all
the energies, the first term is the work supply to the
system by the normal load P , denoted by W ; and the
second term is the plastic work done in the bulk ma-
terial, denoted by Ep. On top of these two terms, we
introduce a new term Ec that stands for the contact dis-
sipation energy associated with contact surface Sc be-
tween the indenter and the material under test, as shown
in Fig. 1. Detail derivation of this term is given in the
following sections. The last term is sum of all surface
energies on the indenter surface and the tested material
surface, denoted by �. Associated with the indentation
δx , the requirement of energy conservation leads to an

Figure 1 A typical static indentation test.

equation among the changes of these energies, i.e.,

δW = δEp + δEc + δ� (1)

It should be emphasized that the elastic deformation
energy in the system is released during unloading phase,
and therefore no elastic energy change is included in
Equation 1.

During the indentation, microscopic asperities on the
contact surfaces must deform and change their shapes
and distribution under the indentation load, because
the force resulted the bulk deformation is transmit-
ted through the microscopic asperities on the contact
surfaces. The energy consumed by all the irreversible
changes that occur among the microscopic asperities
on the two contact surfaces is called the contact surface
dissipation energy. Since this contact dissipation energy
is only related to the contact surface, but not to the bulk
material, it can be expressed as Ec = Acec, in which
Ac is the area of contact surface Sc, and ec is called
density of dissipation energy per contact area on Sc. On
the macro-scale, the density ec is used as a phenomeno-
logical parameter, to be determined by comparing the
model predictions with experimental observations. On
the micro-scale, it can be directly obtained by micro-
scale analysis of the asperity plastic deformation on the
contact surface as discussed later. In addition, the inter-
face energy between indenter and material contributes
to ec. The sum of the surface energies on the indenter
surface Si and the tested material surface Sm, shown in
Fig. 1, is expressed as � = Aiγi + Amγm with Ai and
Am as the areas of the surfaces Si and Sm, and γi and γm
the surface energy densities of the surfaces Si and Sm.
Both γi and γm are assumed to be material constants in
the present analysis.

Let us consider the geometric configuration illus-
trated in Fig. 1. Associated with the infinitesimal in-
dentation δx , the area changes of the surfaces Sc, Si
and Sm are given by the following equations due to the
geometric self-similarity of the indenter,

δAc = 2πrδx

sin θ
, δAi = −2πrδx

sin θ
, δAm = −2πrδx

tan θ

(2)

where r and θ are the radius of the projected area and
the angle between material surface and lateral surface
of indenter respectively. Meanwhile, the change of
plastic work, Ep, done in the bulk test material can be
expressed as

δEp = πr2 H0δx (3)

based upon the conventional plasticity analysis [5, 10],
where H0 is the macrohardness [6, 7] closely related
to the plastic yielding stress of the material. Also, the
work supply to the system by the testing load P is

δW = Pδx (4)

With the help of Equations 2–4, Equation 1 is rewritten
as

Pδx = (
πr2 H0δx

)

+
(

2πrecδx

sin θ
− 2πrγiδx

sin θ
− 2πrγmδx

tan θ

)
(5)
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From Equation 5, it is clear that the work done by the
indentation load activates two irreversible mechanisms.
The first part is consumed by the plastic deformation
in the bulk volume of test material, which is in the
order of O(r2δx); and the second part is dissipated
by contact surfaces and the changes of surface energy,
and in the order of O(rδx). An order-of-magnitude
analysis of the above two parts shows that the ratio of
the second part to the first part is O(1/r ). Therefore,
the second part can be neglected for a large r . However,
in the case of small r , the second part may be of the
same order of magnitude with the first part, and cannot
be neglected. Therefore, the second part is important
in micro-indentation test, and it may be one of the
major sources for the indentation size effect.

From Equation 5, it is easy to relate the indentation
load and the indentation size, that is

P = (π H0)r2 + 2π

sin θ
(ec − γi − γm cos θ )r (6)

or

P = a1r + a2r2 (7)

Constants a1 and a2, as the system parameters, depend
on the test material properties and the indenter shape,
but not on the test load and the indenter size. Quinn
and Quinn [13] indicated that a good empirical fit to
experimental hardness-load data was obtained by using
Equation 7. Hirao and Tomozawa [19] attempted to
correlate surface energy to the term a1r in Equation 7.
Li and coworkers [1, 7, 12] related this term to frictional
and elastic contributions in their PSR model. Fracture
energy dissipation in ceramic indentation test was also
discussed in Quinn and Quinn’s work [13]. All above-
mentioned mechanisms may make contribution to ec,
the contact surface dissipation energy. But we derived
the relation (7) from energy conservation with a concept
of density of contact dissipation energy per contact area,
not from the fitting of experimental data.

Based on the above analysis, the microhardness or
apparent hardness, defined as H = P/(πr2), is given
by rewriting Equation 6 as

H = H0 + 2

sin θ
(ec − γi − γm cos θ )

1

r
(8)

It is clear that microhardness H depends on the inden-
tation size r , and increases rapidly when r decreases
to zero. Therefore, the second term in Equation 8, con-
tributed by the dissipation energy on contact surfaces, is
the reason for the indentation size effect in micro/nano
indentation test. Meantime, the fact that H = H0, when
r → ∞ implies the measured hardness on macro-scale
is indeed a material constant, namely, the macrohard-
ness. Moreover, Equation 8 can be expressed as

H

H0
= 1 + C

r
(9)

where C , an indentation system constant, does not de-
pend on the indentation size, rather depends on the

shape of indenter and more importantly depends on the
properties of contact surface between the indenter and
test material. It should be pointed out that Equation 9
holds for any self-similar indenter, although it is derived
for a conical indenter. From the viewpoint of the phe-
nomenological method, Equation 9 can be used as a pre-
diction for indentation microhardness with a constant
C to be determined by experimental data. For example,
a set of indentation hardness data of Atkinson [9] on
soft metal is predicted by Equation 9 with C = 4.39 µm
(see Fig. 5). The comparisons show that the prediction
is in good agreement with the data. But our effort of
modeling does not stop at this point; we look into the
micro-scale mechanism for the contact surface dissipa-
tion energy ec. In the following section, we extend the
analysis to connect ec and the micro-scale roughness of
contact surfaces.

3. Micro-scale mechanism
At the first glance, an indentation test is pressing an
indenter into a flat surface of the material under test.
A closer examination of the flat surface, even after the
most careful finishing, shows that it is still rough on
a relative microscopic scale. Therefore, the contact be-
tween the indenter and the testing material is the contact
of two rough surfaces on micro-scale, as illustrated in
Fig. 2, where a macro-scale contact element and possi-
ble interacting asperities within this element on micro-
scale are showed schematically.

Although there are many micro-scale mechanisms
that can cause dissipation energy at the interacting
rough surfaces, we believe that the plastic deformation
energy of the micro-asperities on contact surfaces is
one of the major parts of the contact dissipation energy.
In present study, we only focus on plastic deformation
of asperity. Fracture may occur when there are relative
motions of interlocking asperities, but the energy dis-
sipation related to fracture is small in comparison with
those due to plastic deformation in most cases of in-
dentation test for metals. Elastic deformation energy is
also required in indentation test, most of this energy is
recoverable and elastic energy losses due to hysteresis
are also negligible compared with the energy dissipated
by plastic deformation.

Let us recall some of the existing results in contact
mechanics of two rough surfaces on the micro scale,
which is of fundamental importance to the study of fric-
tion, wear and lubrication. Many researchers (see, e.g.,

Figure 2 A macro-scale element on contact surface and the possible
interacting asperities on the element on micro-scale.
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Figure 3 The micro-scale profile of a rough surface.

[20–25]) have studied it. In the present study, we adopt
Chang’s model [21] directly to carry out the estimation
of ec. Since the contact of two rough surfaces can be
modeled as contact between an equivalent rough sur-
face and a flat hard plane [23], we only consider the con-
tact of a single rough surface with an ideal smooth rigid
surface. Consider the micro-scale profile of a rough
surface as shown in Fig. 3. The surface profile of a
representative surface element is expressed as {z(x, y);
x ∈ [0, Lx ], y ∈ [0, L y]}, where z(x, y) is the rough-
ness measurement, in which profile heights are mea-
sured from a reference plane, the x-axis in Fig. 3; and
Lx , L y are the dimensions of the representative surface
element. From the roughness measurement z(x, y) with
a given surface element, roughness parameters, such as
the mean height, m, and the standard deviation of the
rough surface, σ , are defined to characterize the rough
surface (see [23]). It is worthwhile to mention that the
continuous mechanics concept requires that the area
of the surface element is so small on the macro scale
that it can be a geometric point on the contact surface
considered. Meanwhile, it must be large enough on the
micro scale to include so many asperities that the phys-
ical properties of this material point can be obtained
statistically from the asperities on the surface element.
In other words, the roughness parameters, such as m
and σ , are independent of the position of the surface el-
ement as the dimension of the element is large enough
for a homogeneous rough surface.

According to the elastic–plastic model proposed by
Chang et al. [21], we need the following parameters
of the asperities to estimate ec: (1) the flow pressure
of asperity material, p0, which is a material constant
closely related to the macrohardness; (2) the Hertz elas-
tic modulus E , which is related to the Young’s modu-
lus E1 and Poisson’s ratio ν1 of the asperity material as
E = E1/(1 − ν2

1 ); (3) the number density η of asperity;
(4) the asperity height distribution function φ(z); (5) the
radius R of asperity summit, which is taken as the statis-
tic average radius of all asperity summits. Another im-
portant parameter is the critical interference ωc, which
is expressed as ωc = R(πp0/2E)2. As the smooth sur-
face approaches the rough surface, the current separa-
tion between the smooth surface and the reference plane
is denoted by d. For any given d, all asperities whose
heights are originally greater than d must be in contact
with the smooth surface, as shown in Fig. 3. The real

contact area for unit nominal surface area is given by
the Chang’s model [21] as

Ar(d) = Ae(d) + Ap(d) (10)

with

Ae(d) = ηπ R
∫ d+ωc

d
(z − d)φ(z) dz (11)

Ap(d) = ηπ R
∫ ∞

d+ωc

[2(z − d) − ωc]φ(z) dz (12)

The total load for the unit nominal surface area is given
by

P(d) = 4

3
ηπ E R1/2

∫ d+ωc

d
(z−d)3/2φ(z) dz + p0 Ap(d)

(13)
Assume the volume conservation of the micro-
asperities during deformation process, the total plas-
tic work is contributed by the plastic deformation of
asperities when the smooth surface approaches from
d = ∞ to d = m. Actually, the volume of the asperities
above the mean plane is equal to that below the mean
plane, and the rough surface becomes smooth when the
smooth surface approaches to the mean plane, namely
when d = m. Based on this assumption, with the help
of Equations 12 and 13, the dissipation energy per unit
nominal contact surface due to the plastic deformation
of asperities on micro-scale is given as,

ec = ηπ Rp0

∫ ∞

m

∫ ∞

d+ωc

[2(z−d)−ωc]φ(z) dz dd (14)

Generally, it is difficult to give an analytical expression
of asperity height distribution function φ(z) in Equa-
tion 14 for a real rough surface. In order to demon-
strate our model, hereby we consider an exponential
distribution,

φ(z) = 1

σ
exp

(
− z − m

σ

)
(15)

It is a good approximate for many practical rough sur-
faces, including the Gaussian distribution surfaces [24].
In this case, combination of Equations 14 and 15 gives

ec = ηπ Rp0σ (2σ + ωc) exp

(
−ωc

σ

)
(16)

From Equation 14 and its special case (16), the density
of contact dissipation energy due to plastic deforma-
tion of micro-asperities on the rough surfaces depends
both on the material properties {p0, E} of the micro-
asperities and the roughness parameters {σ, η, m, R} of
the rough surfaces. For a given surface, since all these
parameters can be measured, the density of contact sur-
face dissipation energy, ec, is therefore determined. It
can be seen that rougher and softer surfaces have higher
densities of contact surface dissipation energy.
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Figure 4 The influence of roughness parameters on microhardness.

Moreover, a combination of Equations 8 and 16 gives

H = H0 + 2

sin θ
[ηπ Rp0σ (2σ + ωc) exp(−ωc/σ )

− γi − γm cos θ ]
1

r
(17)

Clearly, from Equation 17, the microhardness depends
both on the micro-scale surface roughness parameters
and the properties of micro-asperity.

For soft metals, such as aluminum and mild steel,
the critical flow pressure of asperity material p0 can
approximately be related to macrohardness H0 as
p0 = 0.6H0 (see, [21]), and the elastic deformation is
too small to be taken into account, namely ωc = 0. The
influence by surface tensions γi and γm is also negligible
[19].

Therefore, Equation 17 can be simplified as

H

H0
= 1 + 2.4π

sin θ
(ηRσ )

1

r/σ
(18)

It is clear that the microhardness depends on the sur-
face roughness parameter group (ηRσ ). Fig. 4 shows
how this grouped parameter affects the relationship be-
tween normalized microhardness and normalized in-
denter size by the standard deviation σ of the contact
surface. In Fig. 4, a value of θ = 18◦ is selected, which
corresponds to a Vickers indenter (see [6]). It also can
be seen from Fig. 4 that rougher surfaces have stronger
size dependence in indentation test.

A set of microhardness test data for aluminum spec-
imen from Atkinson [9] is shown in Fig. 5, where the
microhardness is plotted against the indentation size.
The prediction given by Equation 18 is also illustrated
by solid line in Fig. 5, in which the value of angle θ

is taken to be 18 degrees according to a Vickers in-
denter (see [6, 9, 26]). From Fig. 5, it is clear that
the prediction with the roughness parameters taken as
ηRσ 2 = 0.18 µm is in good agreement with the exper-
imental data from Atkinson [9]. Unfortunately, there is
no surface roughness data cited in Atkinson’s experi-
ment. However, they indicated in their papers [9, 26]

Figure 5 The dependence of microhardness on the indentation size.

that the microhardness data were measured on an an-
nealed aluminum surface polished to metallographic
standard. Greenwood and Williamson [20] gave a set of
physically reasonable roughness data for nominally flat
surfaces, in which η = 300/mm2, and Rσ = 10−4 mm2.
They also indicated that for polished flat surfaces the
value of R is in the range of 10–100 µm. Based on these
data, the value of ηRσ 2 for polished surfaces should be
in the range between 0.03 µm and 0.3 µm. Nuri and
Halling [25] measured these roughness parameters of
mild steel surfaces that were ground and lapped, where
σ is in the range of 0.131–4.978 µm, R of 18.364–
5.842 µm, and η from 0.033/µm2 to 0.009/µm2. Ac-
cording to their measurement, the value of ηRσ 2 is
in the range of 0.010–1.303 µm. On the basis of the
above-mentioned surface roughness data, we can con-
clude that the value, ηRσ 2 = 0.18, used in our predic-
tion is in a practically reasonable range for polished
surfaces.

4. Summary
This paper presents a new micro-mechanics model for
predicting the size-dependent microhardness, and sug-
gests that the indentation size effect may be caused
by the contact dissipation energy associated with the
contact surface. An explicit form of contact dissipation
energy is derived by considering plastic deformation of
the micro-scale asperities on the contact surfaces.

The indentation microhardness is dependent on both
plastic work of the bulk material under test and the
contact dissipation energy associated with the contact
area. For large size indentation, the contact dissipation
energy is very small in comparison with the bulk plastic
work, thus can be ignored. As the result, the measured
macrohardness is a material constant that depends only
on the bulk property of the test material. For micro/nano
indentation, the contact dissipation energy may be of
the same order of magnitude with bulk plastic work,
and therefore cannot be neglected. The microhardness
is seen as a function of the indentation size.
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It is noticed that all the micro-hardness experimen-
tal data were obtained without quote of surface rough-
ness information. Therefore, it is necessary that further
micro-indentation tests with real material constants and
controlled surface roughness parameters are needed to
qualify the present model quantitatively.
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